Hazard and operability analysis (HAZOP) is the paradigm of industrial safety that can reveal the hazards of process from its node deviations, consequences, causes, measures and suggestions, and such hazards can be considered as hazard events (HaE). The classification research on HaE has much irreplaceable pragmatic values. In this paper, we present a novel deep learning model termed DLF through multifractal to explore HaE classification where the motivation is that HaE can be naturally regarded as a kind of time series. Specifically, first HaE is vectorized to get HaE time series by employing BERT. Then, a new multifractal analysis method termed HmF-DFA is proposed to win HaE fractal series by analyzing HaE time series. Finally, a new hierarchical gating neural network (HGNN) is designed to process HaE fractal series to accomplish the classification of HaE from three aspects: severity, possibility and risk. We take HAZOP reports of 18 processes as cases, and launch the experiments on this basis. Results demonstrate that compared with other classifiers, DLF classifier performs better under metrics of precision, recall and F1-score, especially for the severity aspect. Also, HmF-DFA and HGNN effectively promote HaE classification. Our HaE classification system can serve application incentives to experts, engineers, employees, and other enterprises. We hope our research can contribute added support to the daily practice in industrial safety.


翻译:危害和可操作性分析(HAZOP)是工业安全范式,它能够从节点偏差、后果、原因、原因、措施和建议中揭示过程的危害,这种危险可以被视为危险事件(HAE)。关于HaE的分类研究具有不可替代的实用价值。在本文中,我们提出了一个名为DLF的新型深层次学习模式,通过多分解探索HaE的分类,其动机是HaE可以自然地被视为一种时间序列。具体地说,首先HaE通过采用BERT,向HAE进行传导以获得HAE的时间序列。然后,建议采用名为HMF-DFA的新的多分形分析方法,通过分析HAE时间序列来赢得HE的分形系列。最后,一个新的分级神经网络(HGNN)旨在处理HE的分形系列,以便从三个方面完成HEE的分类:严重程度、可能性和风险。我们把HAZOP的18个过程报告作为案例,并在此基础上进行实验。结果表明,与其他分类者相比,DLF分类者在HA-FA的精确度、回收和F1号的分类中,也有效地促进我们的研究-G的雇员对H-FA-CR-CR的升级。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
A Survey on Data Augmentation for Text Classification
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员