Despite growing concerns around gender bias in NLP models used in algorithmic hiring, there is little empirical work studying the extent and nature of gendered language in resumes. Using a corpus of 709k resumes from IT firms, we train a series of models to classify the gender of the applicant, thereby measuring the extent of gendered information encoded in resumes. We also investigate whether it is possible to obfuscate gender from resumes by removing gender identifiers, hobbies, gender sub-space in embedding models, etc. We find that there is a significant amount of gendered information in resumes even after obfuscation. A simple Tf-Idf model can learn to classify gender with AUROC=0.75, and more sophisticated transformer-based models achieve AUROC=0.8. We further find that gender predictive values have low correlation with gender direction of embeddings -- meaning that, what is predictive of gender is much more than what is "gendered" in the masculine/feminine sense. We discuss the algorithmic bias and fairness implications of these findings in the hiring context.
翻译:尽管人们对在算法雇用中使用的NLP模式中的性别偏见日益感到关切,但很少有经验工作来研究复发中的性别语言的范围和性质。我们利用信息技术公司的709k简历,培训了一系列模型,对申请人的性别进行分类,从而测量复发中编码的性别信息的范围。我们还调查是否有可能通过消除性别识别特征、爱好、嵌入模型中的性别分空间等来将性别从复发中分解出来。我们发现,即使在复发后,在复发中仍然有大量性别信息。一个简单的Tf-Idf模型可以学习用AUROC=0.75对性别进行分类,而更先进的变异器模型可以实现AUROC=0.8。我们进一步发现,性别预测值与嵌入的性别方向关系不大 -- 也就是说,对性别的预测远远大于男性/女性意义上的“性别”定义。我们讨论了这些结论的算法偏见和公平影响。