Language models for historical states of language are becoming increasingly important to allow the optimal digitisation and analysis of old textual sources. Because these historical states are at the same time more complex to process and more scarce in the corpora available, specific efforts are necessary to train natural language processing (NLP) tools adapted to the data. In this paper, we present our efforts to develop NLP tools for Early Modern French (historical French from the 16$^\text{th}$ to the 18$^\text{th}$ centuries). We present the $\text{FreEM}_{\text{max}}$ corpus of Early Modern French and D'AlemBERT, a RoBERTa-based language model trained on $\text{FreEM}_{\text{max}}$. We evaluate the usefulness of D'AlemBERT by fine-tuning it on a part-of-speech tagging task, outperforming previous work on the test set. Importantly, we find evidence for the transfer learning capacity of the language model, since its performance on lesser-resourced time periods appears to have been boosted by the more resourced ones. We release D'AlemBERT and the open-sourced subpart of the $\text{FreEM}_{\text{max}}$ corpus.
翻译:历史语言状态的语言模型越来越重要,以便能对旧文本来源进行最佳的数字化和分析。 由于这些历史国家同时更复杂,处理过程也更少,因此有必要做出具体努力,培训适应数据适应的自然语言处理工具。 在本文中,我们介绍了我们开发早期现代法语(传统法语,从16美元到18美元)的NLP工具的努力。我们找到了语言模型的转移能力的证据,因为资源较丰富的法国和D'AlembERT的早期现代法语和D'AlembERT语言模型的运行似乎得到了资源较丰富的数字的提升。我们发布了D'AlembERT的版本,我们通过微调它的一个部分语音标记任务,比先前的测试工作表现要好。重要的是,我们找到了语言模型在资源较少的时间段上的学习能力的转移能力,因为其表现似乎得到了资源较丰富的资源源源源的美元/Fretext{D'Alembretr的版本。我们发布了D'AlembERT的版本。