We introduce a new statistical test based on the observed spacings of ordered data. The statistic is sensitive to detect non-uniformity in random samples, or short-lived features in event time series. Under some conditions, this new test can outperform existing ones, such as the well known Kolmogorov-Smirnov or Anderson-Darling tests, in particular when the number of samples is small and differences occur over a small quantile of the null hypothesis distribution. A detailed description of the test statistic is provided including a detailed discussion of the parameterization of its distribution via asymptotic bootstrapping as well as a novel per-quantile error estimation of the empirical distribution. Two example applications are provided, using the test to boost the sensitivity in generic "bump hunting", and employing the test to detect supernovae. The article is rounded off with an extended performance comparison to other, established goodness-of-fit tests.
翻译:我们根据定单数据的观测间隔引入新的统计测试。该统计数据对于检测随机抽样中的不统一性或发生时间序列中的短寿命特征十分敏感。在某些条件下,这一新测试可以超过现有测试,如众所周知的Kolmogorov-Smirnov或Anderson-Darling测试,特别是当样品数量小,对无效假设分布的小微分数出现差异时。该测试统计数据的详细说明包括详细讨论其分布的参数化,即通过无药性靴子穿刺以及新颖的对经验分布的人均误差估计。提供了两个实例,即利用测试提高一般“抽取”中的敏感度,并利用测试检测超新星。该物品四舍五入,与其他既定的优良试验进行延伸性能比较。