Continuous-time Markov chains are used to model stochastic systems where transitions can occur at irregular times, e.g., birth-death processes, chemical reaction networks, population dynamics, and gene regulatory networks. We develop a method to learn a continuous-time Markov chain's transition rate functions from fully observed time series. In contrast with existing methods, our method allows for transition rates to depend nonlinearly on both state variables and external covariates. The Gillespie algorithm is used to generate trajectories of stochastic systems where propensity functions (reaction rates) are known. Our method can be viewed as the inverse: given trajectories of a stochastic reaction network, we generate estimates of the propensity functions. While previous methods used linear or log-linear methods to link transition rates to covariates, we use neural networks, increasing the capacity and potential accuracy of learned models. In the chemical context, this enables the method to learn propensity functions from non-mass-action kinetics. We test our method with synthetic data generated from a variety of systems with known transition rates. We show that our method learns these transition rates with considerably more accuracy than log-linear methods, in terms of mean absolute error between ground truth and predicted transition rates. We also demonstrate an application of our methods to open-loop control of a continuous-time Markov chain.
翻译:持续时间 Markov 链条被用于模拟随机系统,在这种系统中,在不定期的时间(例如出生-死亡过程、化学反应网络、人口动态和基因监管网络)发生过渡。我们开发了一种方法,从完全观察的时间序列中学习持续时间 Markov 链的过渡率函数。与现有方法不同,我们的方法允许过渡率非线性地依赖状态变量和外部共变体。Gillespie 算法用于生成随机系统的轨迹,这些系统具有适应性功能(反应率)。我们的方法可以被视为反向的:考虑到随机反应网络的轨迹,我们得出对运动率函数的估计。虽然以前的方法使用线性或日志线性方法将过渡率连接到交替状态,但我们使用神经网络,提高所学模型的能力和潜在准确性。在化学环境中,这样可以使方法能够从非质量-行动动性功能(反应率)中学习开放性功能。我们的方法可以被看作反向的:我们从一系列系统生成的合成数据,考虑到随机反应网络的轨迹学轨迹,我们用已知的精确度率率速度也显示我们所学的连续的过渡率方法。我们用这种方法,我们用这些推测算方法在相当的逻辑速度速度率之间学习了我们所学的方法。 我们用一个相当的过渡率学的方法,我们用一种持续的过渡率学的方法,我们用一个相当的预测算方法在相当的精确率中学习了我们所学的方法。