When changes are performed on an automated production system (aPS), new faults can be accidentally introduced in the system, which are called regressions. A common method for finding these faults is regression testing. In most cases, this regression testing process is performed under high time pressure and on-site in a very uncomfortable environment. Until now, there is no automated support for finding and prioritizing system test cases regarding the fully integrated aPS that are suitable for finding regressions. Thus, the testing technician has to rely on personal intuition and experience, possibly choosing an inappropriate order of test cases, finding regressions at a very late stage of the test run. Using a suitable prioritization, this iterative process of finding and fixing regressions can be streamlined and a lot of time can be saved by executing test cases likely to identify new regressions earlier. Thus, an approach is presented in this paper that uses previously acquired runtime data from past test executions and performs a change identification and impact analysis to prioritize test cases that have a high probability to unveil regressions caused by side effects of a system change. The approach was developed in cooperation with reputable industrial partners active in the field of aPS engineering, ensuring a development in line with industrial requirements. An industrial case study and an expert evaluation were performed, showing promising results.


翻译:在自动生产系统(APS)上进行修改时,新的故障可能会不小心在系统中引入,这种系统称为回归系统。发现这些缺陷的一个常见方法是回归测试。在多数情况下,这种回归测试过程是在高时间压力下进行的,在非常不舒服的环境中现场进行。到目前为止,没有自动支持在完全一体化的PS中找到适合查找回归的系统测试案例并确定其优先次序。因此,测试技术员必须依靠个人直觉和经验,可能选择不适当的测试案例顺序,在测试运行的后期发现回归。使用适当的优先排序,这种反复的查找和修正回归过程可以简化,通过执行可能早期发现新的回归的测试案例可以节省大量时间。因此,本文中提出的方法是使用以往从过去的测试执行中获得的运行时间数据,并进行变更识别和影响分析,以便优先处理那些极有可能披露系统变化的副作用造成的回归的案例。该方法是与活跃于空间系统工程领域的声誉良好的工业伙伴合作开发的,确保与工业要求一起进行有前途的研究。一项工业案例研究。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
24+阅读 · 2020年3月11日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员