Relying on random matrix theory (RMT), this paper studies asymmetric order-$d$ spiked tensor models with Gaussian noise. Using the variational definition of the singular vectors and values of (Lim, 2005), we show that the analysis of the considered model boils down to the analysis of an equivalent spiked symmetric block-wise random matrix, that is constructed from contractions of the studied tensor with the singular vectors associated to its best rank-1 approximation. Our approach allows the exact characterization of the almost sure asymptotic singular value and alignments of the corresponding singular vectors with the true spike components, when $\frac{n_i}{\sum_{j=1}^d n_j}\to c_i\in [0, 1]$ with $n_i$'s the tensor dimensions. In contrast to other works that rely mostly on tools from statistical physics to study random tensors, our results rely solely on classical RMT tools such as Stein's lemma. Finally, classical RMT results concerning spiked random matrices are recovered as a particular case.
翻译:根据随机矩阵理论(RMT),本文研究使用高森噪声的不对称定值-美元峰值高尔夫模型(Lim,2005年)使用单向量和值的变异定义(Lim,2005年),我们显示,对考虑的模型的分析归结为对等的加压对称成块随机矩阵的分析,该模型的构建依据是所研究的点数的收缩和与其最高级-1近似值相关的单向量的单向量与单向量的单向量的缩缩缩缩。我们的方法允许精确地描述相应的单向量与真正峰值组成部分的无药性单向值和对齐值,而当 $\frac{n_iunh_sum ⁇ j=1 ⁇ d n_j ⁇ toc_i\in [0,1] 美元和 $nor 维值。与其他主要依靠统计物理工具研究随机数的工程相比,我们的结果只依赖Stein's Lemma等典型RMT工具。最后,关于加注随机随机矩阵的典型RMT结果作为特定案例被恢复。