Aspect based sentiment analysis (ABSA) deals with the identification of the sentiment polarity of a review sentence towards a given aspect. Deep Learning sequential models like RNN, LSTM, and GRU are current state-of-the-art methods for inferring the sentiment polarity. These methods work well to capture the contextual relationship between the words of a review sentence. However, these methods are insignificant in capturing long-term dependencies. Attention mechanism plays a significant role by focusing only on the most crucial part of the sentence. In the case of ABSA, aspect position plays a vital role. Words near to aspect contribute more while determining the sentiment towards the aspect. Therefore, we propose a method that captures the position based information using dependency parsing tree and helps attention mechanism. Using this type of position information over a simple word-distance-based position enhances the deep learning model's performance. We performed the experiments on SemEval'14 dataset to demonstrate the effect of dependency parsing relation-based attention for ABSA.
翻译:基于外观的情绪分析(ABSA) 涉及对某一方面审查判决的情绪极性( ABSA) 的识别。 RNN、 LSTM 和 GRU 等深层次学习顺序模型是目前用来推断情绪极性的最新方法。 这些方法很好地捕捉了复议判决中各个词之间的背景关系。 但是,这些方法在捕捉长期依赖性方面是微不足道的。 注意机制通过只关注该判决中最关键部分而起着重要作用。 在ABSA 中, 侧面位置起着关键作用。 接近侧面的文字在确定对立面的情绪时会做出更多的贡献。 因此, 我们提出一种方法, 利用依赖性对立树来捕捉基于位置的信息, 帮助关注机制。 使用这种基于简单单词远程的位置信息可以增强深层次学习模式的性能。 我们在SemEval' 14数据集上进行了实验, 以显示对ABSA 依赖性区分关系的影响 。