Most existing person re-identification (ReID) methods have good feature representations to distinguish pedestrians with deep convolutional neural network (CNN) and metric learning methods. However, these works concentrate on the similarity between encoder output and ground-truth, ignoring the correlation between input and encoder output, which affects the performance of identifying different pedestrians. To address this limitation, We design a Deep InfoMax (DIM) network to maximize the mutual information (MI) between the input image and encoder output, which doesn't need any auxiliary labels. To evaluate the effectiveness of the DIM network, we propose end-to-end Global-DIM and Local-DIM models. Additionally, the DIM network provides a new solution for cross-dataset unsupervised ReID issue as it needs no extra labels. The experiments prove the superiority of MI theory on the ReID issue, which achieves the state-of-the-art results.
翻译:多数现有的人重新识别(ReID)方法具有良好的特征表现,可以区分行人与深相神经网络和计量学习方法,然而,这些工作侧重于编码器输出和地面真相的相似性,忽视输入和编码器输出的关联性,从而影响识别不同行人的工作。为解决这一局限性,我们设计了一个深信息Max(DIM)网络,以尽量扩大输入图像和编码器输出之间的相互信息(MI),而后者不需要任何辅助标签。为了评价DIM网络的有效性,我们提议了从终端到终端的Global-DIM和本地-DIM模型。此外,DIM网络为交叉数据集的未经监督的ReID问题提供了一个新的解决方案,因为它不需要额外的标签。实验证明了MI理论在ReID问题上的优越性,它达到了最新的结果。