The healthcare industry generates troves of unlabelled physiological data. This data can be exploited via contrastive learning, a self-supervised pre-training method that encourages representations of instances to be similar to one another. We propose a family of contrastive learning methods, CLOCS, that encourages representations across space, time, \textit{and} patients to be similar to one another. We show that CLOCS consistently outperforms the state-of-the-art methods, BYOL and SimCLR, when performing a linear evaluation of, and fine-tuning on, downstream tasks. We also show that CLOCS achieves strong generalization performance with only 25\% of labelled training data. Furthermore, our training procedure naturally generates patient-specific representations that can be used to quantify patient-similarity.
翻译:医疗行业生成了无标签生理数据。这些数据可以通过对比性学习加以利用,这是一种自我监督的培训前方法,鼓励对类似情况进行陈述。我们提出一个具有对比性学习方法的大家庭,即CLOCS,鼓励在空间、时间、 textit{和病人之间进行陈述,鼓励在不同的空间、时间、时间、 textit}和病人之间进行陈述。我们表明,CLOCS在对下游任务进行线性评估和微调时,始终优于最先进的方法,即BYOL和SimCLR。我们还表明,CLOCS只用25 ⁇ 的标签培训数据实现了很强的普及性表现。此外,我们的培训程序自然产生特定病人的表述,可用于量化病人差异。