Zero-shot learning (ZSL) aims to transfer knowledge from seen classes to semantically related unseen classes, which are absent during training. The promising strategies for ZSL are to synthesize visual features of unseen classes conditioned on semantic side information and to incorporate meta-learning to eliminate the model's inherent bias towards seen classes. Existing meta generative approaches pursue a common model shared across task distributions; in contrast, we aim to construct a generative network adaptive to task characteristics. To this end, we propose the Attribute-Modulated generAtive meta-model for Zero-shot learning (AMAZ). Our model consists of an attribute-aware modulation network and an attribute-augmented generative network. Given unseen classes, the modulation network adaptively modulates the generator by applying task-specific transformations so that the generative network can adapt to highly diverse tasks. Our empirical evaluations on four widely-used benchmarks show that AMAZ improves state-of-the-art methods by 3.8% and 5.1% in ZSL and generalized ZSL settings, respectively, demonstrating the superiority of our method.
翻译:零光学习(ZSL)旨在将知识从可见的班级转移到培训期间没有的、与语义相关的秘密班级。ZSL的有希望的战略是综合以语义侧面信息为条件的无形班级的视觉特征,并纳入元学习,以消除模型对视觉班的固有偏向。现有的元基因化方法追求一个在任务分布上共享的共同模式;相反,我们的目标是建立一个适应任务特点的基因化网络。为此,我们建议了ZAMAZ的基因变异元模型(AMAZ)。我们的模型包括一个属性觉悟调节网络和一个属性放大的基因网络。根据未知的班级,调整网络通过应用特定任务变异来适应发电机的适应性调整,从而使基因变异网络能够适应高度多样化的任务。我们对四种广泛使用的基准进行的经验评估显示,AMAZ改进了ZSL和普遍ZSL环境的状态方法,分别提高了3.8%和5.1%。