Implicit neural representations such as Neural Radiance Field (NeRF) have focused mainly on modeling static objects captured under multi-view settings where real-time rendering can be achieved with smart data structures, e.g., PlenOctree. In this paper, we present a novel Fourier PlenOctree (FPO) technique to tackle efficient neural modeling and real-time rendering of dynamic scenes captured under the free-view video (FVV) setting. The key idea in our FPO is a novel combination of generalized NeRF, PlenOctree representation, volumetric fusion and Fourier transform. To accelerate FPO construction, we present a novel coarse-to-fine fusion scheme that leverages the generalizable NeRF technique to generate the tree via spatial blending. To tackle dynamic scenes, we tailor the implicit network to model the Fourier coefficients of timevarying density and color attributes. Finally, we construct the FPO and train the Fourier coefficients directly on the leaves of a union PlenOctree structure of the dynamic sequence. We show that the resulting FPO enables compact memory overload to handle dynamic objects and supports efficient fine-tuning. Extensive experiments show that the proposed method is 3000 times faster than the original NeRF and achieves over an order of magnitude acceleration over SOTA while preserving high visual quality for the free-viewpoint rendering of unseen dynamic scenes.
翻译:神经辐射场( NeRF) 等内隐性神经外观表达方式( NeRF) 主要侧重于模拟在多视图环境中捕获的静态物体,通过智能数据结构(例如PlenOctree)可以实现实时合成。 在本文中,我们展示了一部新型的Fleier PlenOctree(FPO)技术,以解决在自由视觉视频(FVV)设置下捕捉的动态场景的高效神经建模和实时生成。我们的FPO的关键思想是将通用NERF、PlenOctree代表制、体积聚合和Fouriereer变换的新型组合。为了加速FPOPO的建设,我们展示了一个新型的粗向向向化组合方案,利用通用的NeRFTF技术通过空间混合生成树。为了应对动态场景,我们调整了隐含的网络模式,以模拟四倍增系数的密度的密度系数。 最后,我们构建了FPOPO,并直接在联盟PleonO( PlenOtree) 结构的叶形结构上,我们展示了后, 30 快速的硬缩缩缩缩缩缩缩缩的图像的图像的图像,以显示S-laimal-laimal-laimal-laimal-traxxxxxxxxxxxxxx