Category-level 6D pose estimation, aiming to predict the location and orientation of unseen object instances, is fundamental to many scenarios such as robotic manipulation and augmented reality, yet still remains unsolved. Precisely recovering instance 3D model in the canonical space and accurately matching it with the observation is an essential point when estimating 6D pose for unseen objects. In this paper, we achieve accurate category-level 6D pose estimation via cascaded relation and recurrent reconstruction networks. Specifically, a novel cascaded relation network is dedicated for advanced representation learning to explore the complex and informative relations among instance RGB image, instance point cloud and category shape prior. Furthermore, we design a recurrent reconstruction network for iterative residual refinement to progressively improve the reconstruction and correspondence estimations from coarse to fine. Finally, the instance 6D pose is obtained leveraging the estimated dense correspondences between the instance point cloud and the reconstructed 3D model in the canonical space. We have conducted extensive experiments on two well-acknowledged benchmarks of category-level 6D pose estimation, with significant performance improvement over existing approaches. On the representatively strict evaluation metrics of $3D_{75}$ and $5^{\circ}2 cm$, our method exceeds the latest state-of-the-art SPD by $4.9\%$ and $17.7\%$ on the CAMERA25 dataset, and by $2.7\%$ and $8.5\%$ on the REAL275 dataset. Codes are available at https://wangjiaze.cn/projects/6DPoseEstimation.html.


翻译:类别 6D 表示估计 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 6D 表示 表示 6D 表示 6D 表示 以 6D 表示 的 高级代表 学习 探索RGB 图像、 等点云和 先前的类别形状之间的复杂和丰富关系 。 此外,我们设计了一个经常性重建网络 3D 75 美元 和 5c RC = 5 美元 美元 5 美元 和 SAD 美元 最新 7 美元 美元 和 SAD 美元 美元 最新 数据 = 5CR 7+ AS AS AS AS AS AS AS AS 0. 0. AS AS AS AS 0. AS AS AS AS 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年9月16日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
“CVPR 2020 接受论文列表 1470篇论文都在这了
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
7+阅读 · 2017年12月26日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员