The rise of embodied AI has greatly improved the possibility of general mobile agent systems. At present, many evaluation platforms with rich scenes, high visual fidelity and various application scenarios have been developed. In this paper, we present a hybrid framework named NeuronsGym that can be used for policy learning of robot tasks, covering a simulation platform for training policy, and a physical system for studying sim2real problems. Unlike most current single-task, slow-moving robotic platforms, our framework provides agile physical robots with a wider range of speeds, and can be employed to train robotic navigation and confrontation policies. At the same time, in order to evaluate the safety of robot navigation, we propose a safety-weighted path length (SFPL) to improve the safety evaluation in the current mobile robot navigation. Based on this platform, we build a new benchmark for navigation and confrontation tasks under this platform by comparing the current mainstream sim2real methods, and hold the 2022 IEEE Conference on Games (CoG) RoboMaster sim2real challenge. We release the codes of this framework\footnote{\url{https://github.com/DRL-CASIA/NeuronsGym}} and hope that this platform can promote the development of more flexible and agile general mobile agent algorithms.
翻译:体现的AI的崛起极大地改善了普通移动剂系统的可能性。目前,已经开发了许多具有丰富景象、高视觉真实性和各种应用情景的评价平台。在本文件中,我们提出了一个名为NeuronsGym的混合框架,可用于对机器人任务进行政策学习,包括培训政策的模拟平台和研究模拟问题的物理系统。与目前大多数单一任务、运动缓慢的机器人平台不同,我们的框架提供了具有更广泛速度的灵活物理机器人,并可用于培训机器人导航和对抗政策。与此同时,为了评估机器人导航的安全性,我们提出了一个安全加权路径长度(SFPL),以改进当前移动机器人导航的安全性评估。基于这一平台,我们为该平台下的导航和对抗性任务建立了一个新的基准,对当前主流的Sim2现实方法进行了比较,并举办了2022年的IEE运动大会(CoG) RoboMaster sim2real 挑战。我们发布了这一框架的代码,用于评估机器人导航和对抗性政策的安全性。同时,我们提出了安全加权路径长度(SFSPL),以改进路径长度,以改进移动机器人导航系统导航系统/DRislimalimalimalimal-IA/GMassimalalslationalgyalpalpalpalpalpalpalpalpalpalpalpalpalpalpal.