We propose a novel method to reconstruct the 3D shapes of transparent objects using hand-held captured images under natural light conditions. It combines the advantage of explicit mesh and multi-layer perceptron (MLP) network, a hybrid representation, to simplify the capture setting used in recent contributions. After obtaining an initial shape through the multi-view silhouettes, we introduce surface-based local MLPs to encode the vertex displacement field (VDF) for the reconstruction of surface details. The design of local MLPs allows to represent the VDF in a piece-wise manner using two layer MLP networks, which is beneficial to the optimization algorithm. Defining local MLPs on the surface instead of the volume also reduces the searching space. Such a hybrid representation enables us to relax the ray-pixel correspondences that represent the light path constraint to our designed ray-cell correspondences, which significantly simplifies the implementation of single-image based environment matting algorithm. We evaluate our representation and reconstruction algorithm on several transparent objects with ground truth models. Our experiments show that our method can produce high-quality reconstruction results superior to state-of-the-art methods using a simplified data acquisition setup.
翻译:我们提出了一种新的方法,使用手持拍摄的自然光条件下的图像重建透明物体的三维形状。它结合了显式网格和多层感知器(MLP)网络的优势,采用混合表示方法,简化了最近论文中使用的采集设置。在通过多视图剪影获得初始形状后,我们引入基于表面的本地MLPs,对顶点位移场(VDF)进行编码以重建表面细节。本地MLPs的设计允许使用两层MLP网络以分段方式表示VDF,这对于优化算法是有利的。在表面上定义本地MLPs而不是体积还减少了搜索空间。这种混合表示使我们能够放宽表示光路约束的光线像素对应关系,并将其改成设计的光线-单元格对应关系,在单幅图像的环境抠图算法的实现中显着简化了操作。我们使用几个透明对象的地面真实模型来评估我们的表示和重建算法。实验证明,相对于使用简化数据采集设置的现有技术方法,我们的方法可以产生高质量的重建结果。