Accurate and robust trajectory prediction of neighboring agents is critical for autonomous vehicles traversing in complex scenes. Most methods proposed in recent years are deep learning-based due to their strength in encoding complex interactions. However, unplausible predictions are often generated since they rely heavily on past observations and cannot effectively capture the transient and contingency interactions from sparse samples. In this paper, we propose a hierarchical hybrid framework of deep learning (DL) and reinforcement learning (RL) for multi-agent trajectory prediction, to cope with the challenge of predicting motions shaped by multi-scale interactions. In the DL stage, the traffic scene is divided into multiple intermediate-scale heterogenous graphs based on which Transformer-style GNNs are adopted to encode heterogenous interactions at intermediate and global levels. In the RL stage, we divide the traffic scene into local sub-scenes utilizing the key future points predicted in the DL stage. To emulate the motion planning procedure so as to produce trajectory predictions, a Transformer-based Proximal Policy Optimization (PPO) incorporated with a vehicle kinematics model is devised to plan motions under the dominant influence of microscopic interactions. A multi-objective reward is designed to balance between agent-centric accuracy and scene-wise compatibility. Experimental results show that our proposal matches the state-of-the-arts on the Argoverse forecasting benchmark. It's also revealed by the visualized results that the hierarchical learning framework captures the multi-scale interactions and improves the feasibility and compliance of the predicted trajectories.


翻译:准确而稳健的邻近智能体轨迹预测对于穿越复杂场景的自主车辆至关重要。由于其在编码复杂交互方面的强大优势,近年来大多数提出的方法都是基于深度学习的。然而,它们往往依赖于过去的观察值,不能有效地捕捉稀疏样本中的瞬态和意外交互,因此会产生不切实际的预测结果。本文提出一种基于深度学习和强化学习的多智能体轨迹预测的分层混合框架,以应对多尺度交互塑造的运动预测难题。在深度学习阶段,基于车辆交通场景,将其划分为多个中间尺度的异构图形,然后采用Transformer型GNN对中间尺度和全局尺度的异构交互进行编码。在强化学习阶段,利用深度学习阶段预测的关键未来点将车辆交通场景分割为局部子场景,以模拟运动规划过程生成轨迹预测。设计了一种基于Transformer的Proximal Policy Optimization(PPO),并结合车辆运动学模型,在微观交互的主导影响下规划运动。设计了一个多目标奖励来平衡代理中心的准确性和场景兼容性。实验结果表明,本文提出的方法在Argoverse预测基准测试中匹配了最新研究水平。可视化结果显示,分层混合学习框架捕捉到了多尺度交互,提高了预测轨迹的可行性和合规性。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
战术先验知识启发的多智能体双层强化学习
专知会员服务
106+阅读 · 2023年5月9日
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
专知会员服务
18+阅读 · 2021年7月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】动态环境下稳健的单目SLAM
泡泡机器人SLAM
13+阅读 · 2018年3月22日
国家自然科学基金
41+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
16+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
13+阅读 · 2008年12月31日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】动态环境下稳健的单目SLAM
泡泡机器人SLAM
13+阅读 · 2018年3月22日
相关基金
国家自然科学基金
41+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
16+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
13+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员