The emergence of large language models (LLMs) further improves the capabilities of open-domain dialogue systems and can generate fluent, coherent, and diverse responses. However, LLMs still lack an important ability: communication skills, which makes them more like information seeking tools than anthropomorphic chatbots. To make LLMs more anthropomorphic and proactive during the conversation, we add five communication skills to the response generation process: topic transition, proactively asking questions, concept guidance, empathy, and summarising often. The addition of communication skills increases the interest of users in the conversation and attracts them to chat for longer. To enable LLMs better understand and use communication skills, we design and add the inner monologue to LLMs. The complete process is achieved through prompt engineering and in-context learning. To evaluate communication skills, we construct a benchmark named Cskills for evaluating various communication skills, which can also more comprehensively evaluate the dialogue generation ability of the model. Experimental results show that the proposed CSIM strategy improves the backbone models and outperforms the baselines in both automatic and human evaluations.
翻译:暂无翻译