We propose a first-order fast algorithm for the weighted max-min fair (MMF) multi-group multicast beamforming problem suitable for large-scale systems. Utilizing the optimal multicast beamforming structure obtained recently, we convert the nonconvex MMF problem into a weight minimization problem. We show this problem is a weakly convex problem and propose using the projected subgradient algorithm (PSA) to solve it directly, avoiding the conventional method for the MMF problem that requires iteratively solving its inverse problem, which is computationally expensive. We show the convergence of PSA, although our problem is only weakly convex. A method for a suitable initial point to accelerate convergence is also presented. Simulation results show that PSA offers near-optimal performance with considerably lower computational complexity than existing methods for large-scale systems.
翻译:我们为加权最大量交易(MMF)多组多声波波波谱问题建议了一种第一级快速算法。 利用最近获得的最佳多声波波波谱结构, 我们将非电流 MMF 问题转换成减重问题。 我们展示了这个问题是一个微弱的二次曲线问题, 并提议使用预测的次梯度算法直接解决这个问题, 避免了MMF 问题的常规方法, 这需要反复解决其反向问题, 后者在计算上是昂贵的。 我们显示了PSA 的趋同, 尽管我们的问题只是微弱的组合。 也介绍了一个适当的初始点加速趋同的方法。 模拟结果表明, PSA 提供接近最佳的性能, 其计算复杂性比大规模系统的现有方法要低得多。