Physical layer security is a useful tool to prevent confidential information from wiretapping. In this paper, we consider a generalized model of conventional physical layer security, referred to as hierarchical information accessibility (HIA). A main feature of the HIA model is that a network has a hierarchy in information accessibility, wherein decoding feasibility is determined by a priority of users. Under this HIA model, we formulate a sum secrecy rate maximization problem with regard to precoding vectors. This problem is challenging since multiple non-smooth functions are involved into the secrecy rate to fulfill the HIA conditions and also the problem is non-convex. To address the challenges, we approximate the minimum function by using the LogSumExp technique, thereafter obtain the first-order optimality condition. One key observation is that the derived condition is cast as a functional eigenvalue problem, where the eigenvalue is equivalent to the approximated objective function of the formulated problem. Accordingly, we show that finding a principal eigenvector is equivalent to finding a local optimal solution. To this end, we develop a novel method called generalized power iteration for HIA (GPI-HIA). Simulations demonstrate that the GPI-HIA significantly outperforms other baseline methods in terms of the secrecy rate.


翻译:物理层安全是防止保密信息被窃听的有用工具。 在本文中,我们认为常规物理层安全的普遍模式,称为等级信息无障碍(HIA)。 HIA模式的一个主要特点是,网络在信息无障碍性方面有等级分级,其中解码的可行性由用户优先决定。根据HIA模式,我们针对预先编码的矢量制定了总保密率最大化问题。这个问题具有挑战性,因为要满足 HIA 条件的保密率涉及多种非移动功能,而且问题也是非凝固。为了应对挑战,我们通过使用LogSumExplate 技术来接近最低功能,然后获得一阶的最佳性条件。一个关键的观察是,由此产生的条件被描绘成一个功能性电子价值问题,在这种情况下,egen值相当于所拟订的问题的近似客观功能。因此,我们表明,找到一个主导体相当于找到一种地方最佳解决办法。为此,我们开发了一种新型方法,称为HIA(GI-HI-HIA)的通用能力,在GIA-HIPA 的基数中,以大大超低的GIIS-HIPA方法。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月8日
Efficient multi-partition topology optimization
Arxiv
0+阅读 · 2021年11月8日
Arxiv
11+阅读 · 2021年2月17日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员