Physical simulations that accurately model reality are crucial for many engineering disciplines such as mechanical engineering and robotic motion planning. In recent years, learned Graph Network Simulators produced accurate mesh-based simulations while requiring only a fraction of the computational cost of traditional simulators. Yet, the resulting predictors are confined to learning from data generated by existing mesh-based simulators and thus cannot include real world sensory information such as point cloud data. As these predictors have to simulate complex physical systems from only an initial state, they exhibit a high error accumulation for long-term predictions. In this work, we integrate sensory information to ground Graph Network Simulators on real world observations. In particular, we predict the mesh state of deformable objects by utilizing point cloud data. The resulting model allows for accurate predictions over longer time horizons, even under uncertainties in the simulation, such as unknown material properties. Since point clouds are usually not available for every time step, especially in online settings, we employ an imputation-based model. The model can make use of such additional information only when provided, and resorts to a standard Graph Network Simulator, otherwise. We experimentally validate our approach on a suite of prediction tasks for mesh-based interactions between soft and rigid bodies. Our method results in utilization of additional point cloud information to accurately predict stable simulations where existing Graph Network Simulators fail.
翻译:准确模拟模型现实的物理模拟对于机械工程和机器人运动规划等许多工程学科至关重要。近年来,学得的图形网络模拟器生成了精确的网状模拟,而只要求传统模拟器的计算成本的一小部分。然而,由此产生的预测器仅限于从现有网状模拟器生成的数据中学习,因此不能包括点云数据等真实的世界感官信息。由于这些预测器只能从最初的状态模拟复杂的物理系统,因此它们展示了一个用于长期预测的高误差积累。在这项工作中,我们在真实世界观测中将感官信息整合到地面图网络模拟器中。特别是,我们利用点云数据预测器预测了可变物体的网状状态。因此,所产生的模型允许在较长的时间范围内进行准确预测,即使在模拟的不确定性之下,例如未知的物质特性。由于点云通常无法在每一个步骤上都提供,特别是在网上环境中,因此我们使用基于浸泡的模型。模型只有在提供这种额外信息时才能使用,并且使用标准的软图式网络模拟网络模拟器,另外,我们用标准的软图象网络模拟模型的方法来精确地预测我们的模拟结果。我们用一个固定的模拟模型,我们在模拟模型的模拟模型的模型中,我们用一个固定的模拟模型的模型的模型的模型,用来用来模拟模型的模型的模型的模型的模型的模型来进行。