There has been growing interest on forecasting mortality. In this article, we propose a novel dynamic Bayesian approach for modeling and forecasting the age-at-death distribution, focusing on a three-components mixture of a Dirac mass, a Gaussian distribution and a Skew-Normal distribution. According to the specified model, the age-at-death distribution is characterized via seven parameters corresponding to the main aspects of infant, adult and old-age mortality. The proposed approach focuses on coherent modeling of multiple countries, and following a Bayesian approach to inference we allow to borrow information across populations and to shrink parameters towards a common mean level, implicitly penalizing diverging scenarios. Dynamic modeling across years is induced trough an hierarchical dynamic prior distribution that allows to characterize the temporal evolution of each mortality component and to forecast the age-at-death distribution. Empirical results on multiple countries indicate that the proposed approach outperforms popular methods for forecasting mortality, providing interpretable insights on the evolution of mortality.
翻译:人们对预测死亡率的兴趣日益浓厚。在本篇文章中,我们建议采用新的、动态的贝叶西亚方法,对死亡年龄分布进行建模和预测,重点是Dirac质量、Gaussian分布和Skew-Nalmal分布的三分成分混合体。根据特定模型,死亡年龄分布通过与婴儿、成人和老年人死亡率主要方面相对应的七个参数加以定性。拟议方法侧重于对多个国家进行连贯的建模,并采用巴伊西亚方法,推断我们允许在人口之间借取信息,并将参数缩到共同平均水平,隐含对不同情况的处罚。不同年份动态建模在前的等级分布中经过了分级动态,从而可以说明每个死亡率组成部分的时间演变情况并预测死亡年龄分布情况。关于多个国家的实证结果表明,拟议方法优于预测死亡率的流行方法,提供了可解释的死亡率演变情况。