Quantiles are useful characteristics of random variables that can provide substantial information of distributions compared with commonly used summary statistics such as means. In this paper, we propose a Bayesian quantile trend filtering method to estimate non-stationary trend of quantiles on graphs. We introduce general shrinkage priors for graph differences to induce locally adaptive Bayesian inference on trends. Introducing so-called shadow priors with multivariate truncated distribution for local scale parameters and mixture representation of the asymmetric Laplace distribution, we provide a simple Gibbs sampling algorithm to generate posterior samples. We also develop variational Bayes approximation to quickly compute point estimates (e.g. posterior means). The numerical performance of the proposed method is demonstrated through simulation study with time series data, application of quantile regression and robust spatial quantile smoothing.
翻译:量子是随机变量的有用特征,这些变量能够提供与常用的简要统计(例如手段)相比关于分布的大量信息。在本文中,我们建议采用贝叶斯四分位趋势过滤法来估计图形中四分位数的非静止趋势。我们采用了图形差异一般缩微前科,以诱导当地适应的贝叶斯人对趋势的推断。我们引入了所谓的影子前科,同时采用多种变式截断分布法,用于本地比例参数和不对称拉普尔分布的混合表示法,我们提供了简单的Gibs抽样算法,以生成后方样本。我们还开发了变形海湾近似法,以快速计算点估计值(例如后方数值)。拟议方法的数字性表现通过时间序列数据模拟研究、四分位回归应用和稳健健的空间平滑动来显示。