Key challenges in developing generalized automatic emotion recognition systems include scarcity of labeled data and lack of gold-standard references. Even for the cues that are labeled as the same emotion category, the variability of associated expressions can be high depending on the elicitation context e.g., emotion elicited during improvised conversations vs. acted sessions with predefined scripts. In this work, we regard the emotion elicitation approach as domain knowledge, and explore domain transfer learning techniques on emotional utterances collected under different emotion elicitation approaches, particularly with limited labeled target samples. Our emotion recognition model combines the gradient reversal technique with an entropy loss function as well as the softlabel loss, and the experiment results show that domain transfer learning methods can be employed to alleviate the domain mismatch between different elicitation approaches. Our work provides new insights into emotion data collection, particularly the impact of its elicitation strategies, and the importance of domain adaptation in emotion recognition aiming for generalized systems.


翻译:开发通用自动情感识别系统的关键挑战包括标签数据稀缺和缺少金标准参考。即使标签标为同一情感类别的提示,相关表达方式的变异性也取决于诱发环境,例如简易对话与带有预定义脚本的操作会话中产生的情感。在这项工作中,我们认为情感感应法是域知识,探索在不同情感感应方法下收集的情绪发音的域传输学习技术,特别是有有限标签的目标样本。我们的情感识别模型将梯度逆转技术与诱变损失功能和软标签损失结合起来,实验结果显示,可以使用域传输学习方法来缓解不同感应方法之间的域错位。我们的工作为情感数据收集提供了新的洞见,特别是其引导战略的影响,以及域适应对于以通用系统为目标的情感识别的重要性。

0
下载
关闭预览

相关内容

迁移学习(Transfer Learning)是一种机器学习方法,是把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),使得目标领域能够取得更好的学习效果。迁移学习(TL)是机器学习(ML)中的一个研究问题,着重于存储在解决一个问题时获得的知识并将其应用于另一个但相关的问题。例如,在学习识别汽车时获得的知识可以在尝试识别卡车时应用。尽管这两个领域之间的正式联系是有限的,但这一领域的研究与心理学文献关于学习转移的悠久历史有关。从实践的角度来看,为学习新任务而重用或转移先前学习的任务中的信息可能会显着提高强化学习代理的样本效率。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
近期必读的六篇 NeurIPS 2020【因果推理】相关论文和代码
专知会员服务
72+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2020年8月30日
Arxiv
5+阅读 · 2020年3月17日
Arxiv
7+阅读 · 2018年11月27日
Arxiv
5+阅读 · 2018年10月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员