This thesis examines the empirical mode decomposition (EMD), a method for decomposing multicomponent signals, from a modern, both theoretical and practical, perspective. The motivation is to further formalize the concept and develop new methods to approach it numerically. The theoretical part introduces a new formalization of the method as an optimization problem over ordered function vector spaces. Using the theory of 'convex-like' optimization and B-splines, Slater-regularity and thus strong duality of this optimization problem is shown. This results in a theoretical justification for the modern null-space-pursuit (NSP) operator-based signal-separation (OSS) EMD-approach for signal decomposition and spectral analysis. The practical part considers the identified strengths and weaknesses in OSS and NSP and proposes a hybrid EMD method that utilizes these modern, but also classic, methods, implementing them in a toolbox called ETHOS (EMD Toolbox using Hybrid Operator-Based Methods and B-splines) and applying them to comparative examples. In the course of this part a new envelope estimation method called 'iterative slope envelope estimation' is proposed.


翻译:本论文从现代的理论和实践角度审视了实验模式分解(EMD),这是从现代理论和实践角度分解多构元素信号的一种方法。其动机是进一步将概念正规化,并开发新的方法来从数字角度处理这一概念。理论部分介绍了该方法在定购功能矢量空间上作为优化问题的一种新正规化方法。使用“类似convex”的优化和B-Spline”理论、Slater-Regular-Reguility,从而展示了这种优化问题的强烈双重性。这在理论上证明现代空平-Pursiut(NSP)基于操作员的信号分离(OSS) 信号分离(EMD-Approach) 的理论理由,用于信号分解和光谱分析。实用部分考虑了已查明的OSS和NSP的优势和弱点,并提出了一种混合的EMD方法,利用这些现代的,但也是经典的方法,在称为ETHOS(EMD工具箱使用混合操作器和B-splines) 并将其应用到比较的例子。在这一部分中,提出了一种称为“缩缩缩缩式的新的信图。

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
0+阅读 · 2023年3月29日
Arxiv
13+阅读 · 2022年4月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员