Neural operators are gaining attention in computational science and engineering. PCA-Net is a recently proposed neural operator architecture which combines principal component analysis (PCA) with neural networks to approximate an underlying operator. The present work develops approximation theory for this approach, improving and significantly extending previous work in this direction. In terms of qualitative bounds, this paper derives a novel universal approximation result, under minimal assumptions on the underlying operator and the data-generating distribution. In terms of quantitative bounds, two potential obstacles to efficient operator learning with PCA-Net are identified, and made rigorous through the derivation of lower complexity bounds; the first relates to the complexity of the output distribution, measured by a slow decay of the PCA eigenvalues. The other obstacle relates the inherent complexity of the space of operators between infinite-dimensional input and output spaces, resulting in a rigorous and quantifiable statement of the curse of dimensionality. In addition to these lower bounds, upper complexity bounds are derived; first, a suitable smoothness criterion is shown to ensure a algebraic decay of the PCA eigenvalues. Then, it is shown that PCA-Net can overcome the general curse of dimensionality for specific operators of interest, arising from the Darcy flow and Navier-Stokes equations.


翻译:神经算子在计算科学和工程学中越来越受到关注。PCA-Net 是一种最近被提出的神经算子架构,它将主成分分析(PCA)与神经网络相结合,以逼近一个底层算子。本文针对该方法开发了逼近理论, 对此前的工作进行了改进和显著的扩展。从定性上讲,本文在对底层算子和数据生成分布作最少假设的情况下,推导出了一种新的通用逼近结果。从定量上看,本文确定了 PCA-Net 有效算子学习的两个潜在障碍,并通过推导下界使其变得明确;第一个障碍涉及输出分布的复杂性,通过 PCA 特征值的缓慢衰减来衡量。另一个障碍与在无穷维度输入和输出空间之间的算子空间的内在复杂度有关,导致对维度诅咒进行了一项严格而可量化的陈述。除了这些下界之外,上界复杂度也被确定;首先确定了一种适当的平滑性标准以保证 PCA 特征值代数衰减。然后通过展示 PCA-Net 可以克服特定算子相关的维度诅咒,包括达西流和 Navier-Stokes 方程。

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
因果图模型导论,183页ppt,加州理工Spencer Gordon讲授
专知会员服务
55+阅读 · 2022年7月20日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员