With current and upcoming imaging spectrometers, automated band analysis techniques are needed to enable efficient identification of most informative bands to facilitate optimized processing of spectral data into estimates of biophysical variables. This paper introduces an automated spectral band analysis tool (BAT) based on Gaussian processes regression (GPR) for the spectral analysis of vegetation properties. The GPR-BAT procedure sequentially backwards removes the least contributing band in the regression model for a given variable until only one band is kept. GPR-BAT is implemented within the framework of the free ARTMO's MLRA (machine learning regression algorithms) toolbox, which is dedicated to the transforming of optical remote sensing images into biophysical products. GPR-BAT allows (1) to identify the most informative bands in relating spectral data to a biophysical variable, and (2) to find the least number of bands that preserve optimized accurate predictions. This study concludes that a wise band selection of hyperspectral data is strictly required for optimal vegetation properties mapping.
翻译:使用当前和即将到来的成像光谱仪,需要自动带式分析技术,以便能够有效地识别最丰富的信息频带,以便利对光谱数据进行优化处理,得出生物物理变量的估计。本文介绍了一个基于高斯进程回归(GPR)的自动光谱带分析工具,用于植被特性的光谱分析。GPR-BAT程序依次向后移去某个变量回归模型中最小的助推波段,直到只保留一个频带。GPR-BAT是在免费的ARTMO(机械学习回归算法)工具箱的框架内实施的,该工具箱专门用来将光学遥感图像转化为生物物理产品。GPR-BAT允许(1) 确定将光谱数据与生物物理变量相联系的最丰富的频带,(2) 找到保留最佳准确预测的最小频带。这项研究得出结论,最佳植被特性绘图严格需要明智的超光谱系选择。