The standard approach to analyzing brain electrical activity is to examine the spectral density function (SDF) and identify predefined frequency bands that have the most substantial relative contributions to the overall variance of the signal. However, a limitation of this approach is that the precise frequency localization and bandwidth of oscillations vary with cognitive demands, thus ideally should not be defined \emph{a priori} in an experiment. In this paper, we develop a data-driven approach to identifies (i) the number of prominent peaks, (ii) the frequency peak locations, and (iii) their corresponding bandwidths (or spread of power around the peaks). We propose a Bayesian mixture auto-regressive decomposition method (BMARD), which represents the standardized SDF as a Dirichlet process mixture based on a kernel derived from second-order auto-regressive processes characterized by location (peak) and scale (bandwidth) parameters. We present a Metropolis-Hastings within Gibbs algorithm to sample from the posterior distribution of the mixture parameters. Simulation studies demonstrate the robustness and performance of the BMARD method. Finally, we use the proposed BMARD method to analyze local field potential (LFP) activity from the hippocampus of laboratory rats across different conditions in a non-spatial sequence memory experiment to examine the link between specific patterns of activity and trial-specific cognitive demands.


翻译:分析大脑电子活动的标准方法是检查光谱密度函数(SDF),并查明对信号总体差异具有最大相对作用的预定义频带(或电源在峰值周围的分布),但这一方法的一个局限性是,振动的精确频率定位和带宽随认知需求而变化,因此,最好不在一个实验中界定 emph{a前置} 。在本文中,我们开发了一种数据驱动方法,以确定(一) 显著峰值的数量,(二) 频率峰值位置,(三) 相应的带宽(或峰值周围的能量分布)。我们建议采用一种巴耶斯混合混合的自动反反向分移方法(BARD),该方法代表标准化的SDFFD作为基于以地点(peak)和比例(波宽宽宽度)为特征的二级自动反向反应过程的内核循环过程。我们用GBMAR-MAR-FA 实验室活动的拟议实地分析方法和BMAR-MAR-MAR-C 实验室活动中B-MAR-C-C-C-CFPL 不同实验室活动的拟议条件。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年4月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年4月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员