We develop an efficient algorithm for sampling the eigenvalues of random matrices distributed according to the Haar measure over the orthogonal or unitary group. Our technique samples directly a factorization of the Hessenberg form of such matrices, and then computes their eigenvalues with a tailored core-chasing algorithm. This approach requires a number of floating-point operations that is quadratic in the order of the matrix being sampled, and can be adapted to other matrix groups. In particular, we explain how it can be used to sample the Haar measure over the special orthogonal and unitary groups and the conditional probability distribution obtained by requiring the determinant of the sampled matrix be a given complex number on the complex unit circle.
翻译:我们开发了一种高效的算法,对根据哈阿尔测量法分布于正正方或单体组的随机矩阵的天值进行取样。我们的技术样本直接对赫森堡这种矩阵形式的系数进行分解,然后用量身定制的核心查勘算法计算它们的天值。这个方法需要按抽样矩阵的顺序进行若干四点浮点操作,并可以调整到其他矩阵组。特别是,我们解释如何使用它来对特殊正方和单体组的Haar测量法进行抽样,要求抽样矩阵的决定因素在复杂的单元圆上有一个复杂的数字,从而获得有条件的概率分布。