Nested simulation arises frequently in {risk management} or uncertainty quantification problems, where the performance measure is a function of the simulation output mean conditional on the outer scenario. The standard nested simulation samples $M$ outer scenarios and runs $N$ inner replications at each. We propose a new experiment design framework for a problem whose inner replication's inputs are generated from distributions parameterized by the outer scenario. This structure lets us pool replications from an outer scenario to estimate another scenario's conditional mean via the likelihood ratio method. We formulate a bi-level optimization problem to decide not only which of $M$ outer scenarios to simulate and how many times to replicate at each, but also how to pool these replications such that the total simulation effort is minimized while achieving a target level of {precision}. The resulting optimal design requires far less simulation effort than $MN$. We provide asymptotic analyses on the convergence rates of the performance measure estimators computed from the experiment design. Empirical results show that our experiment design reduces the simulation effort by orders of magnitude compared to the standard nested simulation and outperforms a state-of-the-art regression-based design that pools replications via regression.
翻译:在 { 风险管理} 或 不确定性 量化 问题中经常出现内嵌模拟, 而性能量度是模拟输出以外景为条件的函数。 标准的嵌套模拟模拟模拟外景样本 $M美元 外景方案并运行每套内复制$N美元。 我们建议一个新的实验设计框架, 其内部复制的投入来自外景情景所设定的分布参数。 这个结构让我们从外景中收集复制物, 以估计另一个假景的有条件平均值。 我们开发双级优化问题, 以便不仅决定模拟的外景值是多少, 模拟的外景值是多少次, 并且如何将这些复制结果集中起来, 以便在达到 { precision} 的目标水平时将全部模拟努力最小化 。 由此产生的最佳设计要求比外景模拟努力少得多 $MNN$ 。 我们对从实验设计中计算出的性能测量仪的趋同率进行微分析。 启示性结果显示, 我们的实验设计减少了模拟努力, 其规模与标准嵌套模模拟模拟模型相比, 并超越了一个基于 复制的状态的复制团。