In this paper, we propose GOHOME, a method leveraging graph representations of the High Definition Map and sparse projections to generate a heatmap output representing the future position probability distribution for a given agent in a traffic scene. This heatmap output yields an unconstrained 2D grid representation of agent future possible locations, allowing inherent multimodality and a measure of the uncertainty of the prediction. Our graph-oriented model avoids the high computation burden of representing the surrounding context as squared images and processing it with classical CNNs, but focuses instead only on the most probable lanes where the agent could end up in the immediate future. GOHOME reaches 3$rd$ on Argoverse Motion Forecasting Benchmark on the MissRate$_6$ metric while achieving significant speed-up and memory burden diminution compared to 1$^{st}$ place method HOME. We also highlight that heatmap output enables multimodal ensembling and improve 1$^{st}$ place MissRate$_6$ by more than 15$\%$ with our best ensemble.
翻译:在本文中,我们提议GOHOME,这是利用高定义地图和稀疏预测的图形表示法的一种方法,以产生热映射输出,代表特定物剂在交通现场的未来位置概率分布。这种热映射输出产生一种不受限制的2D的代理剂未来可能地点的网格表示,允许固有的多式联运和预测不确定性的度量。我们的图示型模型避免了将周围环境作为正方形图像并用古典CNN处理的高计算负担,但只侧重于该物剂近期可能到达的最有可能到达的通道。GOHOME在MissreRate $6 公尺的Argoevicmotion预测基准上达到3美元,同时大大加快速度并减少记忆负担,而家家的方法为1美元。我们还强调,热映射输出能够使多式集成图像并改进1美元,但只把MissRate 6美元放在我们最好的合金下15美元以上。