The logarithmic nonlinearity has been used in many partial differential equations (PDEs) for modeling problems in various applications.Due to the singularity of the logarithmic function, it introducestremendous difficulties in establishing mathematical theories, as well asin designing and analyzing numerical methods for PDEs with such nonlinearity. Here we take the logarithmic Schr\"odinger equation (LogSE)as a prototype model. Instead of regularizing $f(\rho)=\ln \rho$ in theLogSE directly and globally as being done in the literature, we propose a local energy regularization (LER) for the LogSE byfirst regularizing $F(\rho)=\rho\ln \rho -\rho$ locally near $\rho=0^+$ with a polynomial approximation in the energy functional of the LogSE and then obtaining an energy regularized logarithmic Schr\"odinger equation (ERLogSE) via energy variation. Linear convergence is established between the solutions of ERLogSE and LogSE in terms of a small regularization parameter $0<\ep\ll1$. Moreover, the conserved energy of the ERLogSE converges to that of LogSE quadratically, which significantly improvesthe linear convergence rate of the regularization method in the literature. Error estimates are alsopresented for solving the ERLogSE by using Lie-Trotter splittingintegrators. Numerical results are reported to confirm our errorestimates of the LER and of the time-splitting integrators for theERLogSE. Finally our results suggest that the LER performs better than regularizing the logarithmic nonlinearity in the LogSE directly.


翻译:在许多部分差异方程式( PDEs) 中使用了对数非线性对数性( PDEs) 来模拟各种应用中的模型问题。 由于对数函数的独一性, 我们建议对数函数进行本地能源规范化( LER), 首先对数学理论进行正规化, 以及用这种非线性化来设计和分析 PDE 的数值方法。 这里我们将对数 Schr\\" odinger 方程式( LogSE) 当作一个原型模型。 而不是像文献中那样, 直接在LogSE 和全球范围内将 $( rho)\ rho\\ rho\ n\\\ rho$ 。 我们的对数方程式的对数性对数性对数性对数性对数值进行常规化( ERLOr) 和LogLSeqol 的对数分析结果, 也用ERLSErentral 的对数值对数值进行常规化。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2018年11月15日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月22日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
5+阅读 · 2018年11月15日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员