Three-player Number On the Forehead communication may be thought of as a three-player Number In the Hand promise model, in which each player is given the inputs that are supposedly on the other two players' heads, and promised that they are consistent with the inputs of of the other players. The set of all allowed inputs under this promise may be thought of as an order-3 tensor. We surprisingly observe that this tensor is exactly the matrix multiplication tensor, which is widely studied in the design of fast matrix multiplication algorithms. Using this connection, we prove a number of results about both Number On the Forehead communication and matrix multiplication, each by using known results or techniques about the other. For example, we show how the Laser method, a key technique used to design the best matrix multiplication algorithms, can also be used to design communication protocols for a variety of problems. We also show how known lower bounds for Number On the Forehead communication can be used to bound properties of the matrix multiplication tensor such as its zeroing out subrank. Finally, we substantially generalize known methods based on slice-rank for studying communication, and show how they directly relate to the matrix multiplication exponent $\omega$.


翻译:在前台通信中,三玩家编号可能被视为三玩家编号。 在手头承诺模型中,每个玩家都得到假定在另外两个玩家头上的投入,并承诺它们与其他玩家的投入一致。 这个承诺下所有允许投入的一组可能被视为顺序3 - 高度。 我们惊讶地观察到, 这个阵列恰恰是矩阵乘数倍增分数, 在快速矩阵乘数算法的设计中广泛研究过。 使用这个连接, 我们通过使用已知的结果或对其它玩家的技术, 来证明在前台通信和矩阵乘数上的数字都取得了一些结果。 例如, 我们展示了激光法, 用于设计最佳矩阵乘数乘数算法的一种关键技术, 也可以用来设计各种问题的通信协议。 我们还展示了在前台通信中, 已知的数字的下限可以用来约束矩阵乘数倍增数变数的特性, 比如零分位。 最后, 我们大量推广了基于以 美元为单位的列表的已知方法, 来研究通信, 并显示它们与列表数 的反位数 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员