To simulate bosons on a qubit- or qudit-based quantum computer, one has to regularize the theory by truncating infinite-dimensional local Hilbert spaces to finite dimensions. In the search for practical quantum applications, it is important to know how big the truncation errors can be. In general, it is not easy to estimate errors unless we have a good quantum computer. In this paper we show that traditional sampling methods on classical devices, specifically Markov Chain Monte Carlo, can address this issue with a reasonable amount of computational resources available today. As a demonstration, we apply this idea to the scalar field theory on a two-dimensional lattice, with a size that goes beyond what is achievable using exact diagonalization methods. This method can be used to estimate the resources needed for realistic quantum simulations of bosonic theories, and also, to check the validity of the results of the corresponding quantum simulations.
翻译:要在 qubit 或 qudit 量子计算机上模拟 boson 模拟 boson, 就必须通过将无限维的局部Hilbert 空间截断到有限维度来规范理论。 在寻找实用量子应用时, 重要的是要知道缩短误差有多大。 一般来说, 除非我们拥有一台好的量子计算机, 否则很难估计误差。 在本文中, 我们显示古典设备, 特别是Markov 链子 Monte Carlo 的传统采样方法, 可以用今天可用的合理数量的计算资源解决这个问题 。 作为示范, 我们把这个想法应用到二维的天体外理论中, 其尺寸超过使用精确的对角化方法可以实现的范围。 这种方法可以用来估算对肉理理论进行现实量模拟所需的资源, 并且用来检查相应的量子模拟结果的有效性 。