This paper introduces progressive algorithms for the topological analysis of scalar data. Our approach is based on a hierarchical representation of the input data and the fast identification of topologically invariant vertices, which are vertices that have no impact on the topological description of the data and for which we show that no computation is required as they are introduced in the hierarchy. This enables the definition of efficient coarse-to-fine topological algorithms, which leverage fast update mechanisms for ordinary vertices and avoid computation for the topologically invariant ones. We demonstrate our approach with two examples of topological algorithms (critical point extraction and persistence diagram computation), which generate interpretable outputs upon interruption requests and which progressively refine them otherwise. Experiments on real-life datasets illustrate that our progressive strategy, in addition to the continuous visual feedback it provides, even improves run time performance with regard to non-progressive algorithms and we describe further accelerations with shared-memory parallelism. We illustrate the utility of our approach in batch-mode and interactive setups, where it respectively enables the control of the execution time of complete topological pipelines as well as previews of the topological features found in a dataset, with progressive updates delivered within interactive times.
翻译:本文引入了用于对星标数据进行表层分析的渐进算法。 我们的方法基于输入数据的分级表示和快速识别表层变化性脊椎,这些脊椎是不会对数据表层描述产生影响的脊椎,而且我们显示,在将之引入层次时不需要进行计算。 这使得能够定义高效的粗皮至纤维表层算法,利用普通脊椎快速更新机制,避免为表层变化性波动计算。 我们用两个表层算法(临界点提取和持久性图解计算)的例子展示了我们的方法,根据中断请求生成可解释的输出,并逐步加以完善。 实际生命数据集实验表明,除了不断的视觉反馈外,我们的渐进战略甚至提高了非累进算法的运行时间性,我们用共同的模拟平行法描述进一步的加速。 我们用分批制和交互配置方法展示了我们的方法的实用性能, 从而能够分别控制根据中断请求生成的可解释性输出输出输出输出的输出时间, 以及作为互动时间的高级预览, 以及所发现的高级预览。