Recently, Deep Neural Networks (DNNs) have recorded great success in handling medical and other complex classification tasks. However, as the sizes of a DNN model and the available dataset increase, the training process becomes more complex and computationally intensive, which usually takes a longer time to complete. In this work, we have proposed a generic full end-to-end hybrid parallelization approach combining both model and data parallelism for efficiently distributed and scalable training of DNN models. We have also proposed a Genetic Algorithm based heuristic resources allocation mechanism (GABRA) for optimal distribution of partitions on the available GPUs for computing performance optimization. We have applied our proposed approach to a real use case based on 3D Residual Attention Deep Neural Network (3D-ResAttNet) for efficient Alzheimer Disease (AD) diagnosis on multiple GPUs. The experimental evaluation shows that the proposed approach is efficient and scalable, which achieves almost linear speedup with little or no differences in accuracy performance when compared with the existing non-parallel DNN models.


翻译:最近,深神经网络(DNN)在处理医疗和其他复杂分类任务方面取得了巨大成功,然而,随着DNN模型的大小和现有数据集的增加,培训过程变得更加复杂和计算密集,通常需要较长时间才能完成。在这项工作中,我们提议了将模型和数据平行的通用全端对端混合法,结合模型和数据平行法,以便对DNN模型进行有效的分布和可扩缩的培训。我们还提议了基于超常的遗传算法资源分配机制(GABRA),以便最佳分配现有GPU的分区,用于计算业绩优化。我们根据3D残余注意力深神经网络(D-ResAttNet)的建议,对基于多个GPU的高效阿尔茨海默氏病诊断(AD)的一个实际应用了我们的方法。实验性评估表明,拟议的方法既高效又可扩缩,与现有的非平行DNNN模型相比,几乎可以实现线性加速,准确性能几乎没有差异。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员