In this article, we consider the Euclidean dispersion problems. Let $P=\{p_{1}, p_{2}, \ldots, p_{n}\}$ be a set of $n$ points in $\mathbb{R}^2$. For each point $p \in P$ and $S \subseteq P$, we define $cost_{\gamma}(p,S)$ as the sum of Euclidean distance from $p$ to the nearest $\gamma $ point in $S \setminus \{p\}$. We define $cost_{\gamma}(S)=\min_{p \in S}\{cost_{\gamma}(p,S)\}$ for $S \subseteq P$. In the $\gamma$-dispersion problem, a set $P$ of $n$ points in $\mathbb{R}^2$ and a positive integer $k \in [\gamma+1,n]$ are given. The objective is to find a subset $S\subseteq P$ of size $k$ such that $cost_{\gamma}(S)$ is maximized. We consider both $2$-dispersion and $1$-dispersion problem in $\mathbb{R}^2$. Along with these, we also consider $2$-dispersion problem when points are placed on a line. In this paper, we propose a simple polynomial time $(2\sqrt 3 + \epsilon )$-factor approximation algorithm for the $2$-dispersion problem, for any $\epsilon > 0$, which is an improvement over the best known approximation factor $4\sqrt3$ [Amano, K. and Nakano, S. I., An approximation algorithm for the $2$-dispersion problem, IEICE Transactions on Information and Systems, Vol. 103(3), pp. 506-508, 2020]. Next, we develop a common framework for designing an approximation algorithm for the Euclidean dispersion problem. With this common framework, we improve the approximation factor to $2\sqrt 3$ for the $2$-dispersion problem in $\mathbb{R}^2$. Using the same framework, we propose a polynomial time algorithm, which returns an optimal solution for the $2$-dispersion problem when points are placed on a line. Moreover, to show the effectiveness of the framework, we also propose a $2$-factor approximation algorithm for the $1$-dispersion problem in $\mathbb{R}^2$.


翻译:在此文章中, 我们考虑 Euclide 分散问题。 $P = = = = = = = = 美元, p = = = = = = 美元, p = = = 美元, p = 美元, p = 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 以 美元, 以 美元, 美元, 以 美元, 以 美元, 以 以 美元, 以 美元, 以 以 美元, 以 以 以 以 美元, 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 = = = = = = = = 以 以 = = 以 以 = 以 以 以 以 = 以 以 以 = = = = 。 。 。 以 以 以 = = = 。 以 以 。 以 以 以 以 以 以 以 以 。 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 = = 以 以 以 以 以 = = = = = = = = = 以 以 以 = = = = 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 = = =

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员