In this article, we consider the Euclidean dispersion problems. Let $P=\{p_{1}, p_{2}, \ldots, p_{n}\}$ be a set of $n$ points in $\mathbb{R}^2$. For each point $p \in P$ and $S \subseteq P$, we define $cost_{\gamma}(p,S)$ as the sum of Euclidean distance from $p$ to the nearest $\gamma $ point in $S \setminus \{p\}$. We define $cost_{\gamma}(S)=\min_{p \in S}\{cost_{\gamma}(p,S)\}$ for $S \subseteq P$. In the $\gamma$-dispersion problem, a set $P$ of $n$ points in $\mathbb{R}^2$ and a positive integer $k \in [\gamma+1,n]$ are given. The objective is to find a subset $S\subseteq P$ of size $k$ such that $cost_{\gamma}(S)$ is maximized. We consider both $2$-dispersion and $1$-dispersion problem in $\mathbb{R}^2$. Along with these, we also consider $2$-dispersion problem when points are placed on a line. In this paper, we propose a simple polynomial time $(2\sqrt 3 + \epsilon )$-factor approximation algorithm for the $2$-dispersion problem, for any $\epsilon > 0$, which is an improvement over the best known approximation factor $4\sqrt3$ [Amano, K. and Nakano, S. I., An approximation algorithm for the $2$-dispersion problem, IEICE Transactions on Information and Systems, Vol. 103(3), pp. 506-508, 2020]. Next, we develop a common framework for designing an approximation algorithm for the Euclidean dispersion problem. With this common framework, we improve the approximation factor to $2\sqrt 3$ for the $2$-dispersion problem in $\mathbb{R}^2$. Using the same framework, we propose a polynomial time algorithm, which returns an optimal solution for the $2$-dispersion problem when points are placed on a line. Moreover, to show the effectiveness of the framework, we also propose a $2$-factor approximation algorithm for the $1$-dispersion problem in $\mathbb{R}^2$.
翻译:在此文章中, 我们考虑 Euclide 分散问题。 $P = = = = = = = = 美元, p = = = = = = 美元, p = = = 美元, p = 美元, p = 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 以 美元, 以 美元, 美元, 以 美元, 以 美元, 以 以 美元, 以 美元, 以 以 美元, 以 以 以 以 美元, 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 = = = = = = = = 以 以 = = 以 以 = 以 以 以 以 = 以 以 以 = = = = 。 。 。 以 以 以 = = = 。 以 以 。 以 以 以 以 以 以 以 以 。 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 = = 以 以 以 以 以 = = = = = = = = = 以 以 以 = = = = 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 = = =