Neural architecture search (NAS) has emerged as a promising avenue for automatically designing task-specific neural networks. Existing NAS approaches require one complete search for each deployment specification of hardware or objective. This is a computationally impractical endeavor given the potentially large number of application scenarios. In this paper, we propose Neural Architecture Transfer (NAT) to overcome this limitation. NAT is designed to efficiently generate task-specific custom models that are competitive under multiple conflicting objectives. To realize this goal we learn task-specific supernets from which specialized subnets can be sampled without any additional training. The key to our approach is an integrated online transfer learning and many-objective evolutionary search procedure. A pre-trained supernet is iteratively adapted while simultaneously searching for task-specific subnets. We demonstrate the efficacy of NAT on 11 benchmark image classification tasks ranging from large-scale multi-class to small-scale fine-grained datasets. In all cases, including ImageNet, NATNets improve upon the state-of-the-art under mobile settings ($\leq$ 600M Multiply-Adds). Surprisingly, small-scale fine-grained datasets benefit the most from NAT. At the same time, the architecture search and transfer is orders of magnitude more efficient than existing NAS methods. Overall, the experimental evaluation indicates that, across diverse image classification tasks and computational objectives, NAT is an appreciably more effective alternative to conventional transfer learning of fine-tuning weights of an existing network architecture learned on standard datasets. Code is available at https://github.com/human-analysis/neural-architecture-transfer
翻译:神经结构搜索(NAS)已成为自动设计特定任务神经网络的一个有希望的渠道。 现有的NAS 方法要求对硬件或目标的每个部署规格进行一次彻底搜索。 鉴于可能应用的情景可能很多, 这是一个计算上不切实际的努力。 在本文中, 我们提议神经结构传输(NAT) 以克服这一限制。 NAT 旨在高效生成在多重冲突目标下具有竞争力的特定任务定制模型。 为了实现这一目标, 我们学习了任务特有特有特有特有的特有特有特有特有网络超级网, 可以在不接受任何额外培训的情况下对其进行取样。 我们的方法的关键是综合在线传输学习和许多目标的进化搜索程序。 一个经过预先训练的高级网络在同时搜索特定任务子网络时进行迭代调整。 我们展示了NAT 11项基准图像分类的功效, 从大型多级到小规模精细度数据集。 在所有案例中, 包括图像网络, NTNTETeteteet在移动分类情况下改进了国家技术的多样化( leq$ 600M Multiplyalal-adly adtravelrial AT) 搜索过程过程程序。 在最大规模的搜索中, 和现有的升级系统上, 系统上, 高级的搜索和现有标准转换系统是比现有标准化的更高效的系统化的系统化的系统化的系统化的系统化系统化的系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化, 。