Linear Parameter Varying Dynamical Systems (LPV-DS) encode trajectories into an autonomous first-order DS that enables reactive responses to perturbations, while ensuring globally asymptotic stability at the target. However, the current LPV-DS framework is established on Euclidean data only and has not been applicable to broader robotic applications requiring pose control. In this paper we present an extension to the current LPV-DS framework, named Quaternion-DS, which efficiently learns a DS-based motion policy for orientation. Leveraging techniques from differential geometry and Riemannian statistics, our approach properly handles the non-Euclidean orientation data in quaternion space, enabling the integration with positional control, namely SE(3) LPV-DS, so that the synergistic behaviour within the full SE(3) pose is preserved. Through simulation and real robot experiments, we validate our method, demonstrating its ability to efficiently and accurately reproduce the original SE(3) trajectory while exhibiting strong robustness to perturbations in task space.
翻译:暂无翻译