Centering is a commonly used technique in linear regression analysis. With centered data on both the responses and covariates, the ordinary least squares estimator of the slope parameter can be calculated from a model without the intercept. If a subsample is selected from a centered full data, the subsample is typically un-centered. In this case, is it still appropriate to fit a model without the intercept? The answer is yes, and we show that the least squares estimator on the slope parameter obtained from a model without the intercept is unbiased and it has a smaller variance covariance matrix in the Loewner order than that obtained from a model with the intercept. We further show that for noninformative weighted subsampling when a weighted least squares estimator is used, using the full data weighted means to relocate the subsample improves the estimation efficiency.


翻译:在线性回归分析中,中心是一种常用的线性回归分析技术。如果有关于反应和共变的中央数据,一般的坡度参数最小正方数估计符可以在不截取的情况下从模型中计算出来。如果从一个中心全数据中选择子抽样,则子抽样通常不以中为中心。在这种情况下,是否仍然适宜在不截取的情况下适合模型?答案是肯定的,我们显示,在没有截取的情况下从一个模型中获得的坡度参数上最小正方数估计符是公正的,在 Loewner 顺序中,其差异共变量矩阵小于在截取模型中获得的变量。我们进一步显示,当使用加权最小正方数估计符时,使用全部数据加权方法来移动子抽样的估算效率时,非信息加权加权加权的子抽样子抽样的子抽样。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月1日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员