The Join-the-Shortest-Queue (JSQ) load-balancing scheme is known to minimise the average delay of jobs in homogeneous systems consisting of identical servers. However, it performs poorly in heterogeneous systems where servers have different processing rates. Finding a delay optimal scheme remains an open problem for heterogeneous systems. In this paper, we consider a speed-aware version of the JSQ scheme for heterogeneous systems and show that it achieves delay optimality in the fluid limit. One of the key issues in establishing this optimality result for heterogeneous systems is to show that the sequence of steady-state distributions indexed by the system size is tight in an appropriately defined space. The usual technique for showing tightness by coupling with a suitably defined dominant system does not work for heterogeneous systems. To prove tightness, we devise a new technique that uses the drift of exponential Lyapunov functions. Using the non-negativity of the drift, we show that the stationary queue length distribution has an exponentially decaying tail - a fact we use to prove tightness. Another technical difficulty arises due to the complexity of the underlying state-space and the separation of two time-scales in the fluid limit. Due to these factors, the fluid-limit turns out to be a function of the invariant distribution of a multi-dimensional Markov chain which is hard to characterise. By using some properties of this invariant distribution and using the monotonicity of the system, we show that the fluid limit is has a unique and globally attractive fixed point.
翻译:合并- 短期平衡( JSQ) 负载平衡方案( JSQ) 是已知的, 以最大限度地减少由相同服务器组成的同质系统中工作的平均延迟。 但是, 它在服务器处理率不同的不同, 在不同系统中表现不佳 。 找到一个延迟最佳方案仍然是不同系统的一个开放问题 。 在本文中, 我们考虑对混杂系统 JSQ 方案的快速认知版本, 并显示它在流体极限中实现延迟最佳性。 在为混杂系统建立这种最佳性结果时, 关键问题之一是显示系统大小所索引的稳态分布序列在适当确定的空间里很紧。 通常使用与定义合适的主导系统连接来显示紧凑性的方法对混杂性系统不起作用 。 为了证明这种紧凑性, 我们设计了一种使用指数性 Lyapunov 函数移动的新方法。 我们显示, 静态排队列队列分布的尾部有指数腐烂的尾部—— 我们用这个事实来证明它很紧凑。 另一个技术困难是, 由系统内部的状态- 空间的复杂度 和 定序分布 将两个恒定值 功能 显示为 的 的 的 。