Chinese medical question-answer matching is more challenging than the open-domain question answer matching in English. Even though the deep learning method has performed well in improving the performance of question answer matching, these methods only focus on the semantic information inside sentences, while ignoring the semantic association between questions and answers, thus resulting in performance deficits. In this paper, we design a series of interactive sentence representation learning models to tackle this problem. To better adapt to Chinese medical question-answer matching and take the advantages of different neural network structures, we propose the Crossed BERT network to extract the deep semantic information inside the sentence and the semantic association between question and answer, and then combine with the multi-scale CNNs network or BiGRU network to take the advantage of different structure of neural networks to learn more semantic features into the sentence representation. The experiments on the cMedQA V2.0 and cMedQA V1.0 dataset show that our model significantly outperforms all the existing state-of-the-art models of Chinese medical question answer matching.


翻译:中国的医学问答匹配比英语的开放式问答匹配更具挑战性。 尽管深层次的学习方法在改进问答匹配的性能方面表现良好, 但这些方法仅侧重于句子中的语义信息, 而忽略了问答之间的语义联系, 从而导致性能缺陷。 在本文中, 我们设计了一系列互动的句子代表学习模型来解决这个问题。 为了更好地适应中国医学问答匹配, 并且利用不同神经网络结构的优势, 我们建议交叉 BERT 网络在句子中提取深层次的语义信息, 以及问答之间的语义联系, 然后与多级CNN 网络或 BIGRU 网络相结合, 以利用神经网络的不同结构来学习句子表达中的语义特征。 有关 cMedQA V2. 0 和 cMedQA V1.0 数据集的实验显示, 我们的模型大大超越了所有中国医学问题解答的现有状态模式。

1
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
深度学习NLP相关资源大列表
机器学习研究会
3+阅读 · 2017年9月17日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
Learning to Focus when Ranking Answers
Arxiv
5+阅读 · 2018年8月8日
Arxiv
10+阅读 · 2018年3月22日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
深度学习NLP相关资源大列表
机器学习研究会
3+阅读 · 2017年9月17日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
Top
微信扫码咨询专知VIP会员