In this article, we propose some two-sample tests based on ball divergence and investigate their high dimensional behavior. First, we study their behavior for High Dimension, Low Sample Size (HDLSS) data, and under appropriate regularity conditions, we establish their consistency in the HDLSS regime, where the dimension of the data grows to infinity while the sample sizes from the two distributions remain fixed. Further, we show that these conditions can be relaxed when the sample sizes also increase with the dimension, and in such cases, consistency can be proved even for shrinking alternatives. We use a simple example involving two normal distributions to prove that even when there are no consistent tests in the HDLSS regime, the powers of the proposed tests can converge to unity if the sample sizes increase with the dimension at an appropriate rate. This rate is obtained by establishing the minimax rate optimality of our tests over a certain class of alternatives. Several simulated and benchmark data sets are analyzed to compare the performance of these proposed tests with the state-of-the-art methods that can be used for testing the equality of two high-dimensional probability distributions.


翻译:在本篇文章中,我们建议根据球形差异进行一些双抽样测试,并调查其高维行为。首先,我们研究它们对于高维度、低样本大小(HDLSS)数据的行为,并在适当的常规条件下,在高低LSS制度中,我们确定它们的一致性,在高低LSS制度下,数据尺寸逐渐扩大至无限,而两种分布的样本大小保持不变。此外,我们表明,当样本大小随着尺寸的大小而增加时,这些条件可以放松,在这种情况下,甚至对于缩小的替代品,也可以证明一致性。我们使用一个简单的例子,涉及两种正常的分布,以证明即使HDLSS制度没有一致的测试,如果样品大小与尺寸相适应,则拟议的测试的力量可以趋于一致。这一比率是通过确定我们对某类替代品的测试的微缩速率最佳性而获得的。对几个模拟和基准数据集进行了分析,以比较这些拟议测试的性能与可用于测试两种高维概率分布平等程度的先进方法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
40+阅读 · 2020年9月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月15日
Arxiv
0+阅读 · 2023年2月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员