Recent studies have shown remarkable success in universal style transfer which transfers arbitrary visual styles to content images. However, existing approaches suffer from the aesthetic-unrealistic problem that introduces disharmonious patterns and evident artifacts, making the results easy to spot from real paintings. To address this limitation, we propose AesUST, a novel Aesthetic-enhanced Universal Style Transfer approach that can generate aesthetically more realistic and pleasing results for arbitrary styles. Specifically, our approach introduces an aesthetic discriminator to learn the universal human-delightful aesthetic features from a large corpus of artist-created paintings. Then, the aesthetic features are incorporated to enhance the style transfer process via a novel Aesthetic-aware Style-Attention (AesSA) module. Such an AesSA module enables our AesUST to efficiently and flexibly integrate the style patterns according to the global aesthetic channel distribution of the style image and the local semantic spatial distribution of the content image. Moreover, we also develop a new two-stage transfer training strategy with two aesthetic regularizations to train our model more effectively, further improving stylization performance. Extensive experiments and user studies demonstrate that our approach synthesizes aesthetically more harmonious and realistic results than state of the art, greatly narrowing the disparity with real artist-created paintings. Our code is available at https://github.com/EndyWon/AesUST.


翻译:最近的研究显示,在将任意视觉风格转换为内容图像的普遍风格转让方面取得了显著的成功;然而,现有方法遇到了美学和非现实主义问题,带来了不和谐的模式和明显的文物,使得从真实的绘画中很容易看到结果。为了解决这一局限性,我们提议Aesust,这是一部新颖的美学增强的通用风格转让方法,可以产生更现实和令人高兴的美学风格的任意风格。具体地说,我们的方法引入了一种美学歧视,从大量艺术家创作的绘画中学习人类普观美观特征。然后,将美学特征纳入其中,通过一个新型的美学-美学-风格-感(AesSA)模块来提升风格转换过程。这样一个AesSA模块使我们的爱学-增强通用风格模式能够按照全球美学频道的风格图像分布以及内容图像的本地语系空间分布,高效和灵活地整合样式模式。此外,我们还开发了一个新的两阶段性转移培训策略,通过两种美学规范来更有效地培训我们的模型,进一步改进Stylal-Astemin-at(Asimation)的演化绩效,在现实化/用户研究中更深入地展示了我们正在缩小地展示的实验室/制的模型。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
【芝加哥大学】可变形的风格转移,Deformable Style Transfer
专知会员服务
31+阅读 · 2020年3月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月12日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
【芝加哥大学】可变形的风格转移,Deformable Style Transfer
专知会员服务
31+阅读 · 2020年3月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员