Recent studies have shown remarkable success in universal style transfer which transfers arbitrary visual styles to content images. However, existing approaches suffer from the aesthetic-unrealistic problem that introduces disharmonious patterns and evident artifacts, making the results easy to spot from real paintings. To address this limitation, we propose AesUST, a novel Aesthetic-enhanced Universal Style Transfer approach that can generate aesthetically more realistic and pleasing results for arbitrary styles. Specifically, our approach introduces an aesthetic discriminator to learn the universal human-delightful aesthetic features from a large corpus of artist-created paintings. Then, the aesthetic features are incorporated to enhance the style transfer process via a novel Aesthetic-aware Style-Attention (AesSA) module. Such an AesSA module enables our AesUST to efficiently and flexibly integrate the style patterns according to the global aesthetic channel distribution of the style image and the local semantic spatial distribution of the content image. Moreover, we also develop a new two-stage transfer training strategy with two aesthetic regularizations to train our model more effectively, further improving stylization performance. Extensive experiments and user studies demonstrate that our approach synthesizes aesthetically more harmonious and realistic results than state of the art, greatly narrowing the disparity with real artist-created paintings. Our code is available at https://github.com/EndyWon/AesUST.
翻译:最近的研究显示,在将任意视觉风格转换为内容图像的普遍风格转让方面取得了显著的成功;然而,现有方法遇到了美学和非现实主义问题,带来了不和谐的模式和明显的文物,使得从真实的绘画中很容易看到结果。为了解决这一局限性,我们提议Aesust,这是一部新颖的美学增强的通用风格转让方法,可以产生更现实和令人高兴的美学风格的任意风格。具体地说,我们的方法引入了一种美学歧视,从大量艺术家创作的绘画中学习人类普观美观特征。然后,将美学特征纳入其中,通过一个新型的美学-美学-风格-感(AesSA)模块来提升风格转换过程。这样一个AesSA模块使我们的爱学-增强通用风格模式能够按照全球美学频道的风格图像分布以及内容图像的本地语系空间分布,高效和灵活地整合样式模式。此外,我们还开发了一个新的两阶段性转移培训策略,通过两种美学规范来更有效地培训我们的模型,进一步改进Stylal-Astemin-at(Asimation)的演化绩效,在现实化/用户研究中更深入地展示了我们正在缩小地展示的实验室/制的模型。