For singularly perturbed convection-diffusion problems, supercloseness analysis of finite element method is still open on Bakhvalov-type meshes, especially in the case of 2D. The difficulties arise from the width of the mesh in the layer adjacent to the transition point, resulting in a suboptimal estimate for convergence. Existing analysis techniques cannot handle these difficulties well. To fill this gap, a novel interpolation is designed delicately for the first time for the smooth part of the solution, bringing about the optimal supercloseness result of almost order 2 under an energy norm for finite element method. Our theoretical result is uniformly in the singular perturbation parameter and is supported by the numerical experiments.
翻译:对于特别受扰动的对流分解扩散问题,在Bakhvalov-型介质上,特别是对2D型介质,对有限元素方法的超深分析仍然开放。 与过渡点相邻的层层网状宽度造成了困难,导致对趋同的不理想估计。 现有分析技术无法很好地处理这些困难。 为了填补这一空白,首次为解决方案的顺利部分设计了一个新的内插,在限定元素方法的能量规范下,产生了近于顺序2的最优超深结果。 我们的理论结果是在单振动参数上一致的,并得到数字实验的支持。</s>