Singleton et al (2009) have argued that the flux of pulsars measured at 1400 MHz shows an apparent violation of the inverse-square law with distance ($r$), and it is consistent with $1/r$ scaling. They deduced this from the fact that the convergence error obtained in reconstructing the luminosity function of pulsars using an iterative maximum likelihood procedure is about $10^5$ times larger for a distance exponent of two (corresponding to the inverse-square law) compared to an exponent of one. When we applied the same technique to this pulsar dataset with two different values for the trial luminosity function in the zeroth iteration, we find that neither of them can reproduce a value of $10^5$ for the ratio of the convergence error between these distance exponents. We then reconstruct the differential pulsar luminosity function using Lynden-Bell's $C^{-}$ method after positing both an inverse-linear and an inverse-square scalings with distance. We show this method cannot help in discerning between the two exponents. Finally, when we tried to estimate the power law exponent with a Bayesian regression procedure, we do not get a best-fit value of one for the distance exponent. The model residuals obtained from our fitting procedure are larger for the inverse-linear law compared to the inverse-square law. Moreover, the observed pulsar flux cannot be parameterized only by power-law functions of distance, period, and period derivative. Therefore, we conclude from our analysis using multiple methods that there is no evidence that the pulsar radio flux at 1400 MHz violates the inverse-square law.
翻译:Soneton等人(2009年)认为,1400兆赫测得的脉冲星流与1400兆赫测得的脉冲星体的通量相比,显示明显违反以距离计算的反方方法律(美元),而且符合1美元/美元的比例缩放。他们从以下事实推断出:在使用迭代最大可能性程序重建脉冲星的光度函数的过程中,获得的趋同差差差差差值大约是2倍(相当于逆方法律),比1兆赫高1400兆赫。当我们用同一技术对脉冲星数据集应用两种不同值的脉冲法,用于零度的试验光度函数。我们发现,在使用迭代最大可能性程序重建脉冲的脉冲函数中,两者均无法复制10美元/5美元值。我们随后用Lyn-Bell的模型(美元-美元-平方法律)的偏差值来重新校正的脉冲功率函数,在从反线和反方平方法律的距离计算中无法比值。我们用比更远法法的直方法律的推算法值来算算算法值。我们无法在最远法前法期间里算中,我们无法判算算算算算算算算算算算出一个比一个比。最后法值。我们用一个比法度法则法则,我们用一个比法的回算法值,在比法的推算法则法程法程法程的推算出一个比。我们算法则,最后法则,最后算法则是先算算法则,最后算法则法则法则是无法在比。