A multi-layer image is more valuable than a single-layer image from a graphic designer's perspective. However, most of the proposed image generation methods so far focus on single-layer images. In this paper, we propose MontageGAN, which is a Generative Adversarial Networks (GAN) framework for generating multi-layer images. Our method utilized a two-step approach consisting of local GANs and global GAN. Each local GAN learns to generate a specific image layer, and the global GAN learns the placement of each generated image layer. Through our experiments, we show the ability of our method to generate multi-layer images and estimate the placement of the generated image layers.
翻译:多层图像比从图形设计师的角度看单层图像更有价值。 但是,迄今为止,大多数拟议的图像生成方法都侧重于单层图像。 在本文中,我们提出了MontageGAN(MontagageGAN),这是一个生成多层图像的创意对立网络(GAN)框架。我们的方法使用了由本地GANs和全球GAN组成的两步方法。每个本地GAN学会生成一个特定的图像层,而全球GAN学会了每个生成的图像层的位置。我们通过实验展示了我们生成多层图像和估计生成图像层位置的方法。