We show that in bipartite graphs a large expansion factor implies very fast dynamic matching. Coupled with known constructions of lossless expanders, this gives a solution to the main open problem in a classical paper of Feldman, Friedman, and Pippenger (SIAM J. Discret. Math., 1(2):158-173, 1988). Application 1: storing sets. We construct 1-query bitprobes that store a dynamic subset $S$ of an $N$ element set. A membership query reads a single bit, whose location is computed in time $\poly(\log N, \log (1/\epsilon))$ time and is correct with probability $1-\epsilon$. Elements can be inserted and removed efficiently in time $\quasipoly (\log N)$. Previous constructions were static: membership queries have the same parameters, but each update requires the recomputation of the whole data structure, which takes time $\poly(\# S \log N)$. Moreover, the size of our scheme is smaller than the best known constructions for static sets. Application 2: switching networks. We construct explicit constant depth $N$-connectors of essentially minimum size in which the path-finding algorithm runs in time quasipolynomial in $\log N$. In the non-explicit construction in Feldman, Friedman and Pippenger (SIAM J. Discret. Math., 1(2):158-173, 1988). and in the explicit construction of Wigderson and Zuckerman (Combinatorica, 19(1):125-138, 1999) the runtime is exponential in $N$.
翻译:在双叶图中,我们显示在双叶图中,一个大的扩展系数意味着非常快速的动态匹配。 与已知的无损扩张体的构造相加, 这为Feldman、 Friedman 和 Pippenger (SIAM J. Discret. Math., 1 (2): 158-173, 1988) 古典论文(SIAM J. Discret., 1 (2): 158-173, 1988) 中的主要开放问题提供了解决方案。 应用程序 1: 存储数据集 。 我们建造一个存储一个动态子的1 美元元元元元元元元组合。 一个成员查询读取一个数, 其位置是按时间(\ log N,\ log (1/ epsil) 来计算, 美元( i/ eplix) 时间, 时间是: 我们的计划规模小于已知的最佳建筑 美元, 在固定的轨道构造中, 在固定的轨道上, J- malmail- transal comal art artal artal art: the made: the made- rial lifill ruil stration strationaltime strational stration stration strut.