We present and analyze a hybridizable discontinuous Galerkin (HDG) finite element method for the coupled Stokes--Biot problem. Of particular interest is that the discrete velocities and displacement are $H(\text{div})$-conforming and satisfy the compressibility equations pointwise on the elements. Furthermore, in the incompressible limit, the discretization is strongly conservative. We prove well-posedness of the discretization and, after combining the HDG method with backward Euler time stepping, present a priori error estimates that demonstrate that the method is free of volumetric locking. Numerical examples further demonstrate optimal rates of convergence in the $L^2$-norm for all unknowns and that the discretization is locking-free.
翻译:我们提出并分析可混合的不连续 Galerkin (HDG) 有限元素方法, 用于应对斯托克斯- 比奥特( Stokes- Biot) 问题。 特别令人感兴趣的是, 离散速度和迁移是 $H (\ text{div}), 和 $H( text{div}), 和 $( $H) 和 折叠式方程式。 此外, 在不可压缩的极限中, 离散是十分保守的。 我们证明离散状态非常稳妥, 在将 HDG 方法与落后的 Euler 时间阶结合后, 提出一个先验错误估计, 表明该方法不含量锁。 数字实例进一步表明, 对所有未知者而言, $L2 美元- 诺姆( Norm) 最理想的趋同率, 离散是无锁的。