LU and Cholesky matrix factorization algorithms are core subroutines used to solve systems of linear equations (SLEs) encountered while solving an optimization problem. Standard factorization algorithms are highly efficient but remain susceptible to the accumulation of roundoff errors, which can lead solvers to return feasibility and optimality claims that are actually invalid. This paper introduces a novel approach for solving sequences of closely related SLEs encountered in nonlinear programming efficiently and without roundoff errors. Specifically, it introduces rank-one update algorithms for the roundoff-error-free (REF) factorization framework, a toolset built on integer-preserving arithmetic that has led to the development and implementation of fail-proof SLE solution subroutines for linear programming. The formal guarantees of the proposed algorithms are established through the derivation of theoretical insights. Their advantages are supported with computational experiments, which demonstrate upwards of 75x-improvements over exact factorization run-times on fully dense matrices with over one million entries. A significant advantage of the methodology is that the length of any coefficient calculated via the proposed algorithms is bounded polynomially in the size of the inputs without having to resort to greatest common divisor operations, which are required by and thereby hinder an efficient implementation of exact rational arithmetic approaches.


翻译:LU 和 Choolesky 矩阵要素化算法是用来解决在解决优化问题时遇到的线性方程式系统的核心子常规。标准要素化算法非常高效,但仍然容易累积回合错误,这可以引导解决者返回可行性和最佳性主张,而这些主张实际上无效。本文介绍了一种新颖的方法,以解决在非线性编程中遇到的密切相关的SLE序列,既高效又没有回合性错误。具体地,它为圆盘-无螺旋(REF)系数化框架引入了一级更新算法,这是建立在整数-保留算法基础上的工具,已经导致为线性编程开发和实施防故障的SLE解决方案子路径。拟议算法的正式保障是通过理论见解推导而确定的。它们的好处得到了计算实验的支持,这些实验显示,在精确系数化时间上上升了75x-简化,超过100万个条目。方法的一个显著优势是,通过整数保值算法计算出的任何系数长度,导致为线性编程程序开发和实施防故障的SLELUL解决方案。因此,要求采用最合理的计算方法,从而限制采用最合理的计算方法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员