Physics-guided Neural Networks (PGNNs) represent an emerging class of neural networks that are trained using physics-guided (PG) loss functions (capturing violations in network outputs with known physics), along with the supervision contained in data. Existing work in PGNNs have demonstrated the efficacy of adding single PG loss functions in the neural network objectives, using constant trade-off parameters, to ensure better generalizability. However, in the presence of multiple physics loss functions with competing gradient directions, there is a need to adaptively tune the contribution of competing PG loss functions during the course of training to arrive at generalizable solutions. We demonstrate the presence of competing PG losses in the generic neural network problem of solving for the lowest (or highest) eigenvector of a physics-based eigenvalue equation, common to many scientific problems. We present a novel approach to handle competing PG losses and demonstrate its efficacy in learning generalizable solutions in two motivating applications of quantum mechanics and electromagnetic propagation. All the code and data used in this work is available at https://github.com/jayroxis/Cophy-PGNN.


翻译:物理引导神经网络(PGNNs)是新兴的神经网络,利用物理引导损失功能(在已知物理学的网络产出中发现违规现象)以及数据所包含的监督手段进行培训。在PGNs的现有工作表明,在神经网络目标中增加单一PG损失功能是有效的,使用不变的权衡参数,以确保更普遍化。然而,在多种物理损失功能存在相互竞争的坡度方向的情况下,在培训过程中需要适应地调整相互竞争的PG损失功能的贡献,以达成普遍适用的解决办法。我们证明,在解决基于物理的机能价值方程式的最低(或最高)神经网络问题中存在着相互竞争的PG损失,这是许多科学问题所共有的。我们提出了处理相竞争的PG损失的新办法,并展示其在两种激励量子力学和电磁传播应用中学习通用解决方案的效率。这项工作使用的所有代码和数据都可在 https://github.com/jayroxis/Cophy-PGNNS中查阅。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
专知会员服务
44+阅读 · 2020年10月31日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员